Sunday, 6 July 2014

algebra precalculus - exponential equation



$$\sqrt{(5+2\sqrt6)^x}+\sqrt{(5-2\sqrt6)^x}=10$$




So I have squared both sides and got:



$$(5-2\sqrt6)^x+(5+2\sqrt6)^x+2\sqrt{1^x}=100$$



$$(5-2\sqrt6)^x+(5+2\sqrt6)^x+2=100$$



I don't know what to do now


Answer



You don't have to square the equation in the first place.




Let $y = \sqrt{(5+2\sqrt{6})^x}$, then $\frac{1}{y} = \sqrt{(5-2\sqrt{6})^x}$. Hence you have $y + \frac{1}{y} = 10$ i.e. $y^2 + 1 = 10y$ i.e. $y^2-10y+1 = 0$.



Hence, $(y-5)^2 =24 \Rightarrow y = 5 \pm 2 \sqrt{6}$.



Hence, $$\sqrt{(5+2\sqrt{6})^x} = 5 \pm 2\sqrt{6} \Rightarrow x = \pm 2$$



(If you plug in $x = \pm 2$, you will get $5+2\sqrt{6} + 5-2\sqrt{6} $ which is nothing but $10$)


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...