There's a mapping $f:X\rightarrow Y$.
1.for all $A,B\subset X$, $f(A\cap B)=f(A)\cap f(B)$, prove $f$ is injective.
2.for all $A\subset X$, $f(A^{c})=[f(A)]^{c}$, prove $f$ is bijective.
Answer
For 1 you want to show that $f(x) = f(y)$ implies $x = y$. So let $f(x) = f(y)$. Then $f(\{x\}) = f(\{y\})$ and hence $f(\{x\}) \cap f(\{y\}) = f(\{x\}) = f(\{y\}) = f(\{x\} \cap \{y\})$. Hence $x=y$.
No comments:
Post a Comment