Tuesday, 1 July 2014

real analysis - Show that the function f(x) = begin{cases}
frac{x^2y^4}{x^4+y^8} ,& text{if } (x,y)≠ (0,0) \ 0, &text{if } (x,y)=
(0,0)end{cases}
f(x) = begin{cases}
frac{x^2y^4}{x^4+y^8} ,& text{if } (x,y)≠ (0,0) \ 0, &text{if } (x,y)=
(0,0)end{cases}
is Gateaux

Show that the function



f(x)={x2y4x4+y8,if (x,y)(0,0)0,if (x,y)=(0,0)




is Gateaux differentiable at (0,0) but not continuous at (0,0).



So I know how to show it is Gateaux differentiable at (0,0), but I don't know how to go about showing it is not continuous...

No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...