Sunday, 11 January 2015

calculus - Evaluate $int sqrt{ frac {sin(x-alpha)} {sin(x+alpha)} },operatorname d!x$?



How to go about evaluating the following integral?



$$ I = \int \sqrt{ \dfrac {\sin(x-\alpha)} {\sin(x+\alpha)} }\,\operatorname d\!x$$




What I have done so far:



$$ I = \int \sqrt{ 1-\tan\alpha\cdot\cot x }\,\operatorname d\!x$$
Let $ t^2 = 1-\tan\alpha\cdot\cot x $



$$ \begin{align}
2t\,\operatorname d\!t &= \tan\alpha \cdot \csc^2x\,\operatorname d\!x \\
& = \tan\alpha \cdot \Bigg(1 + \Big(\dfrac{1-t^2}{\tan\alpha}\Big)^2\Bigg)\,\operatorname d\!x \\
& = \dfrac{\Big(\tan^2 \alpha + (1-t^2)^2\Big)}{\tan \alpha}dx \end{align}$$




So, from that:
$$\begin{align}
I &= \int \sqrt{ 1-\tan\alpha\cdot\cot x }\,dx \\
& = \int \dfrac{2t^2\tan\alpha}{\Big(\tan^2 \alpha + (1-t^2)^2\Big)}\, \operatorname d\!t \\
\end{align}$$



What to do next?



Edit:

I had thought of doing a substitution: $u = 1-t^2$ but that doesn't work as you need one more $t$ term in the numerator.


Answer



Given that,



$$I = \int \sqrt{ \dfrac {\sin(x-\alpha)} {\sin(x+\alpha)} }\,dx$$



multiplying and dividing by $\sqrt{\sin(x-\alpha)}$.



we get,




$$I = \int { \dfrac {\sin(x-\alpha)} {\sqrt{\sin(x+\alpha)\cdot \sin (x-\alpha) }}}\,dx$$



$$I=\int \dfrac{ \sin x\cdot \cos{\alpha }}{\sqrt{\sin^2x-\sin^2\alpha}}\ dx-\int\dfrac{\cos x\cdot \sin\alpha} {\sqrt{\sin^2x-\sin^2\alpha}}\ dx$$(how?)



$$I= \cos{\alpha}\int\dfrac{ \sin x dx}{\sqrt{\sin^2x-\sin^2\alpha}}dx-\sin\alpha\int\dfrac{\cos x dx}{\sqrt{\sin^2x-\sin^2\alpha}}dx$$



For the first integral,make the substituion $\cos x=u$. For the second integral make the substituion $\sin x=v$.



You can take it from here.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...