Sunday, 11 January 2015

elementary set theory - Cardinality of sets of functions


Show that the set $A$ of all functions $f:\mathbb{Z}^{+} \to \mathbb{Z}^{+}$ and $B$ of all functions $f:\mathbb{Z}^{+} \to \{0,1\}$ have the same cardinality.




I am having trouble to define a bijection that would prove this statement. Any hints would be appreciated.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...