Written, in Ex.8 Ch.9.1 of the book Advanced Calculus by P. M. Fitzpatrick :
Suppose that ∞∑k=1ak and ∞∑k=1bk are series of positive numbers such that lim Prove that the series \sum\limits_{k=1}^\infty a_k converges iff the series \sum\limits_{k=1}^\infty b_k converges.
Am I correct by the following (sketch of) proof? :
1- For a given \epsilon_1 there is N_1 such that \left|\frac{a_n}{b_n} - l\right| < \epsilon_1 for all n \ge N_1.
2- Since the series \sum\limits_{k=1}^\infty a_k converges, for a given \epsilon_2 there is N_2 such that \left|b_{n+1}+\dots+b_{n+k}\right|< \epsilon_1 for all n \ge N_2 any for all natural numbers k.
3- Define N = \max {\{N_1,N_2}\}.
4- From Step (1), a_{n+k} < (\epsilon_1+l) b_{n+k} for all n \ge N any for all natural numbers k. [Also, a_i's and b_i's are all positive]. Thus a_{n+1}+\dots+a_{n+k} < (\epsilon_1+l) (b_{n+1}+\dots+b_{n+k})< \epsilon_3. Then the convergence of the series \sum\limits_{k=1}^\infty b_k implies the convergence of the series \sum\limits_{k=1}^\infty a_k.
5- For the reverse implication, we use the fact that \lim\limits_{n \to \infty}\frac{a_n}{b_n}=l \iff \lim\limits_{n \to \infty}\frac{b_n}{a_n}= \frac{1}{l}= l' >0 and repeat the process this time for a and b exchanged.
6- The Quotient Property For Sequences hold for a nonzero limit in the denominator, but since the limit in the numerator also is zero so we may use the The Quotient Property For Sequences.
Thanks.
Answer
Overall looks ok. But you can simplify the proof a lot just from the fact that
$$\left|\frac{a_k}{b_k}-l\right|<\varepsilon \Leftrightarrow (l-\varepsilon)b_k
Which means:
If \sum_{k=1}^{\infty}b_k<\infty then
\sum_{k=1}^{\infty}a_k=\sum_{k=1}^{N(\varepsilon)}a_k+\sum_{k=N(\varepsilon)+1}^{\infty}a_k<\sum_{k=1}^{N(\varepsilon)}a_k + (l+\varepsilon)\sum_{k=N(\varepsilon)+1}^{\infty}b_k<\inftyIf \sum_{k=1}^{\infty}a_k<\infty then
\sum_{k=1}^{\infty}b_k=\sum_{k=1}^{N(\varepsilon)}b_k+\sum_{k=N(\varepsilon)+1}^{\infty}b_k<\sum_{k=1}^{N(\varepsilon)}b_k + \frac{1}{l-\varepsilon}\sum_{k=N(\varepsilon)+1}^{\infty}a_k<\infty
\varepsilon>0 can be small enough so that l-\varepsilon>0.
No comments:
Post a Comment