Friday, 5 June 2015

combinatorics - Closed form for a sum




Please, i need help with this example, step by step.



Calculate the value of the next summation, i.e. express simple formula without the sum:



n1+n2+n3+n4=56n2n4(7)n1n1!n2!n3!n4!




I think the formula is





n1+n2+n3+n4=n=n!xn1x2n2x3n3x4n4n2!n2!n3!n4!



I don't know how to proceed, i stuck here.



Here is prtscr: http://prntscr.com/l8gluf


Answer



We consider the multinomial theorem in the form
\begin{align*} \left(x_1+x_2+x_3+x_4\right)^5&=\sum_{{n_1+n_2+n_3+n_4=5}\atop{n_j\geq 0, 1\leq j\leq 4}} \binom{5}{n_1,n_2,n_3,n_4}x_1^{n_1}x_2^{n_2}x_3^{n_3}x_4^{n_4}\\ &=\sum_{{n_1+n_2+n_3+n_4=5}\atop{n_j\geq 0, 1\leq j\leq 4}}\frac{5!}{n_1!n_2!n_3!n_4!}x_1^{n_1}x_2^{n_2}x_3^{n_3}x_4^{n_4}\tag{1} \end{align*}




We obtain applying (1)
\begin{align*} \color{blue}{\sum_{{n_1+n_2+n_3+n_4=5}\atop{n_j\geq 0, 1\leq j\leq 4}}}& \color{blue}{\frac{6^{n_2-n_4} (-7)^{n_1}}{n_1! n_2! n_3! n_4!}}\\ &=\frac{1}{5!}\sum_{{n_1+n_2+n_3+n_4=5}\atop{n_j\geq 0, 1\leq j\leq 4}}\frac{5!}{n_1! n_2! n_3! n_4!} (-7)^{n_1}6^{n_2}1^{n_3}\left(\frac{1}{6}\right)^{n_4} \\ &=\frac{1}{5!}\left(-7+6+1+\frac{1}{6}\right)^5\\ &\,\,\color{blue}{=\frac{1}{933\,120}} \end{align*}



No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...