Please, i need help with this example, step by step.
Calculate the value of the next summation, i.e. express simple formula without the sum:
$$\sum_{n_1 + n_2 + n_3 + n_4 = 5} \frac{6^{n_2-n_4} (-7)^{n_1}}{n_1! n_2! n_3! n_4!}$$
I think the formula is
$\sum_{n1 + n2 + n3 + n4 = n} = \frac{n!* x^{n_1} * x2^{n_2} * x3^{n_3}* x4^{n_4}}{n2! n2! n3! n4!}$
I don't know how to proceed, i stuck here.
Here is prtscr: http://prntscr.com/l8gluf
Answer
We consider the multinomial theorem in the form
\begin{align*}
\left(x_1+x_2+x_3+x_4\right)^5&=\sum_{{n_1+n_2+n_3+n_4=5}\atop{n_j\geq 0, 1\leq j\leq 4}}
\binom{5}{n_1,n_2,n_3,n_4}x_1^{n_1}x_2^{n_2}x_3^{n_3}x_4^{n_4}\\
&=\sum_{{n_1+n_2+n_3+n_4=5}\atop{n_j\geq 0, 1\leq j\leq 4}}\frac{5!}{n_1!n_2!n_3!n_4!}x_1^{n_1}x_2^{n_2}x_3^{n_3}x_4^{n_4}\tag{1}
\end{align*}
We obtain applying (1)
\begin{align*}
\color{blue}{\sum_{{n_1+n_2+n_3+n_4=5}\atop{n_j\geq 0, 1\leq j\leq 4}}}& \color{blue}{\frac{6^{n_2-n_4} (-7)^{n_1}}{n_1! n_2! n_3! n_4!}}\\
&=\frac{1}{5!}\sum_{{n_1+n_2+n_3+n_4=5}\atop{n_j\geq 0, 1\leq j\leq 4}}\frac{5!}{n_1! n_2! n_3! n_4!} (-7)^{n_1}6^{n_2}1^{n_3}\left(\frac{1}{6}\right)^{n_4} \\
&=\frac{1}{5!}\left(-7+6+1+\frac{1}{6}\right)^5\\
&\,\,\color{blue}{=\frac{1}{933\,120}}
\end{align*}
No comments:
Post a Comment