Tuesday, 5 April 2016

calculus - Let a be a positive number. Then $lim_{n to infty}[frac{1}{a+n}+frac{1}{2a+n}+cdots +frac{1}{na+n}]$

Problem :



Let $a$ be a positive number. Then $$\lim_{n \to \infty}\left[\frac{1}{a+n}+\frac{1}{2a+n}+\cdots +\frac{1}{na+n}\right]$$



Please suggest how to proceed in such limit problems, will be of great help thanks.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...