Problem :
Let $a$ be a positive number. Then $$\lim_{n \to \infty}\left[\frac{1}{a+n}+\frac{1}{2a+n}+\cdots +\frac{1}{na+n}\right]$$
Please suggest how to proceed in such limit problems, will be of great help thanks.
Problem :
Let $a$ be a positive number. Then $$\lim_{n \to \infty}\left[\frac{1}{a+n}+\frac{1}{2a+n}+\cdots +\frac{1}{na+n}\right]$$
Please suggest how to proceed in such limit problems, will be of great help thanks.
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment