Thursday, 7 April 2016

calculus - Proving that $int^1_0 frac{1}{sqrt{ln(frac{1}{x})}}dx$ converges?



How do you prove that $\int^1_0 \frac{1}{\sqrt{\ln(\frac{1}{x})}}dx$ converges? I've tried more or less everything I can think of and still can't get the answer. Any hints will be appreciated!


Answer



HINT



We have that



$$\int^1_0 \frac{1}{\sqrt{\ln(\frac{1}{x})}}dx
=\int_1^\infty \frac{1}{x^2\sqrt{\ln x}}dx

=\int_1^2 \frac{1}{x^2\sqrt{\ln x}}dx+\int_2^\infty \frac{1}{x^2\sqrt{\ln x}}dx$$



and then refer to limit comparison test.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...