Friday, 8 April 2016

linear algebra - Reducing the Matrix to Reduced Row Echelon Form




Reduce the matrix $\begin{bmatrix}1&-1&-6\\4&-1&-15\\-2&2&12\end{bmatrix}$ to reduced row-echelon form




How is my answer incorrect?



I performed the row operations:




1) $R_2 = 4R_1 - R_2$



2) $R_3 = 2R_1 + R_3$



3) $R_2 = R_2 / -3$;



4) $R_3 = R_3/18$



5) $R_2 = R_2 + 7R_3$




6) $R_1 = R_1 + -6R_3$



7) $R_1 = R_1 + R_2$



Which gives me the RREF of the matrix



$\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}$



So how in the world is my solution incorrect?


Answer




After Step 1:



$$\left[\begin{matrix}1 & -1 & -6 \\
0 & -3 & -9 \\
-2 & 2 & 12\end{matrix}\right]$$



After Step 2:



$$\left[\begin{matrix}1 & -1 & -6 \\
0 & -3 & -9 \\

0 & 0 & 0\end{matrix}\right]$$



After Step 3:



$$\left[\begin{matrix}1 & -1 & -6 \\
0 & 1 & 3 \\
0 & 0 & 0\end{matrix}\right]$$



All of the steps with $R_3$ are unnecessary since $R_3$ is all zeroes. Skip to Step 7:




$$\left[\begin{matrix}1 & 0 & -3 \\
0 & 1 & 3 \\
0 & 0 & 0\end{matrix}\right]$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...