Wednesday, 14 September 2016

algebra precalculus - How can I find this limit? $lim_{xto0}left(frac{xcsc(2x)}{3cos(5x)}right)$



$$\lim_{x\to0}\left(\frac{x\csc(2x)}{3\cos(5x)}\right)$$




My attempt was just turning csc to 1/sin, how can I solve this


Answer



for $x$ reaching $0$ $\sin {x} = x$



then



$$\lim_{x\to0}\frac {x}{\sin{x}} = 1$$



$$\lim_{x\to0} \cos {x} = 1$$




So your limit is equal to $\frac{1}{6}$ if I'm not mistakening


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...