How to compute the integral ∫∞−∞e−x2dx using polar coordinates?
Answer
Hint: Let I=∫∞−∞e−x2dx. Then I2=(∫∞−∞e−x2dx)(∫∞−∞e−y2dy)=∫∞−∞∫∞−∞e−x2e−y2dxdy=∫∞−∞∫∞−∞e−(x2+y2)dxdy. Now switch to polar coordinates.
How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment