How can I determine the following limit$$\lim_{n \to \infty} \frac{-\ln(n)}{n^x}$$ where $x \in [2, \infty)$
WolframAlpha tells me the limit is $0$, but I am not sure how to go about calculating it manually, I suspect L'Hospital plays a role?
Answer
From L'Hospital's Rule, we have
$$\lim_{n\to \infty}\frac{-\ln n}{n^x}=\lim_{n\to \infty}\frac{-1/n}{xn^{x-1}}=-\frac1x\lim_{n\to \infty}\frac{1}{n^x}=0$$
when $x>0$
No comments:
Post a Comment