Sunday, 25 September 2016

calculus - Test the series suminftyk=0frac(1)k1cdot3cdot5cdots(2k+1)1cdot4cdot7cdots(3k+1)



Use the ratio test for absolute convergence to determine
whether the series absolutely or
diverge.



k=0(1)k135(2k+1)147(3k+1)




I don't understand how the general term becomes this limkak+1ak=limk2k+33k+4



Obviously this Absolutely converges, I just dont get the 2nd step.


Answer



Let us write
ak=135(2k+1)147(3k+1).
Then, we have
ak+1ak=135[2(k+1)+1]147[3(k+1)+1]147(3k+1)135(2k+1)=135(2k+3)147(3k+4)147(3k+1)135(2k+1)=135(2k+1)(2k+3)147(3k+1)(3k+4)147(3k+1)135(2k+1)=135(2k+1)147(3k+1)2k+33k+4147(3k+1)135(2k+1)=2k+33k+4.
This proves the 2nd step you asked.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...