Use the ratio test for absolute convergence to determine
whether the series absolutely or
diverge.
∞∑k=0(−1)k1⋅3⋅5⋯(2k+1)1⋅4⋅7⋯(3k+1)
I don't understand how the general term becomes this limk→∞ak+1ak=limk→∞2k+33k+4
Obviously this Absolutely converges, I just dont get the 2nd step.
Answer
Let us write
ak=1⋅3⋅5⋯(2k+1)1⋅4⋅7⋯(3k+1).
Then, we have
ak+1ak=1⋅3⋅5⋯[2(k+1)+1]1⋅4⋅7⋯[3(k+1)+1]⋅1⋅4⋅7⋯(3k+1)1⋅3⋅5⋯(2k+1)=1⋅3⋅5⋯(2k+3)1⋅4⋅7⋯(3k+4)⋅1⋅4⋅7⋯(3k+1)1⋅3⋅5⋯(2k+1)=1⋅3⋅5⋯(2k+1)(2k+3)1⋅4⋅7⋯(3k+1)(3k+4)⋅1⋅4⋅7⋯(3k+1)1⋅3⋅5⋯(2k+1)=1⋅3⋅5⋯(2k+1)1⋅4⋅7⋯(3k+1)⋅2k+33k+4⋅1⋅4⋅7⋯(3k+1)1⋅3⋅5⋯(2k+1)=2k+33k+4.
This proves the 2nd step you asked.
No comments:
Post a Comment