Sunday, 25 September 2016

calculus - Solve in terms of the Gamma function



Show:
101x21+x2dx=π4(Γ(14)Γ(34)4Γ(34)Γ(14))







First attempt:
101x21+x2dx=10(1x2)1/2(1+x2)1/2dxlet x=u1/2dx=12u1/2du=1210(1u)1/2(1+u)1/2u1/2dulet 1u=yu=1y,du=dy=1210y1/2(2y)1/2(1y)1/2dy=????






Second attempt:
101x21+x2dxx2=cos(2θ)dx=sin(2θ)xdθx=0θ=πx=1θ=0=0π1cos(2θ)1+cos(2θ)sin(2θ)cos(2θ)dθ2sin2(x)=1cos(2x)2cos2(x)=1+cos(2x)sin(2x)=2sin(x)cos(x)=0π2sin2θ2cos2θ2sin(θ)cos(θ)cos(2θ)dθ=2π0tan(θ)sin(θ)cos(θ)cos(2θ)dθ=2π0sin2(θ)cos(2θ)dθlet θ=2ϕdθ=2dϕθ=0ϕ=0θ=πϕ=π/2=2π/20sin2(2ϕ)cos(4ϕ)2dϕ=4π/20sin2(2ϕ)cos(4ϕ)dϕ=????







@doraemonpaul's Method:
101x21+x2dx=101x21+x2×1x21x2dx=101x21x4dx=10(1x4)1/2dx10x2(1x4)1/2dxlet x=u1/4dx=14u3/4du=10(1u)1/214u3/4du10u1/2(1u)1/214u3/4du=1410u3/4(1u)1/2du1410u1/4(1u)1/2duB(m,n)=10tm1(1t)n1dtm11=3/4n11=1/2m21=1/4n21=1/2m1=1/4n1=1/2m2=3/4n2=1/2=14B(14,12)14B(34,12)B(m,n)=Γ(m)Γ(n)Γ(m+n)=14(Γ(14)Γ(12)Γ(34)Γ(34)Γ(12)Γ(54))=π4(Γ(14)Γ(34)Γ(34)Γ(54))=π4(Γ(14)Γ(34)Γ(34)14Γ(14))=π4(Γ(14)Γ(34)4Γ(34)Γ(14))



NB: this question has been edited post comments ,


Answer



I think you treat this question too complicated.



First it should note that integral of the form 10(1x2)a(1+x2)b dx is impossible to have easy-look substitution to transform it to a integral of the form 10xp(1x)q dx (i.e. beta function).



Second it should note that trigonometric substitution also often bring this type of question too complicated.




But I admit that this question has a level of lucky or tricky.



101x21+x2 dx



=101x21x21+x2 dx



=101x21x4 dx



=10(1x4)12 dx10x2(1x4)12 dx




=10(1x)12 d(x14)10x12(1x)12 d(x14)



=1410x34(1x)12 dx1410x14(1x)12 dx



=B(14,12)4B(34,12)4



=Γ(14)Γ(12)4Γ(34)Γ(34)Γ(12)4Γ(54)



=π Γ(14)4Γ(34)π Γ(34)Γ(14)




=π Γ(14)4×2πΓ(14)π Γ(34)2πΓ(34)



=142πΓ2(14)12πΓ2(34)


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...