Show:
1∫0√1−x21+x2dx=√π4(Γ(14)Γ(34)−4Γ(34)Γ(14))
First attempt:
1∫0√1−x21+x2dx=1∫0(1−x2)1/2(1+x2)−1/2dxlet x=u1/2dx=12u−1/2du=121∫0(1−u)1/2(1+u)−1/2u−1/2dulet 1−u=yu=1−y,du=−dy=−12∫10y1/2(2−y)−1/2(1−y)−1/2dy=????
Second attempt:
1∫0√1−x21+x2dxx2=cos(2θ)dx=−sin(2θ)xdθx=0→θ=πx=1→θ=0=0∫π√1−cos(2θ)1+cos(2θ)⋅−sin(2θ)√cos(2θ)dθ2sin2(x)=1−cos(2x)2cos2(x)=1+cos(2x)sin(2x)=2sin(x)cos(x)=0∫π√2sin2θ2cos2θ⋅−2sin(θ)cos(θ)√cos(2θ)dθ=2π∫0tan(θ)⋅sin(θ)cos(θ)√cos(2θ)dθ=2π∫0sin2(θ)√cos(2θ)dθlet θ=2ϕdθ=2dϕθ=0→ϕ=0θ=π→ϕ=π/2=2π/2∫0sin2(2ϕ)√cos(4ϕ)2dϕ=4π/2∫0sin2(2ϕ)√cos(4ϕ)dϕ=????
@doraemonpaul's Method:
1∫0√1−x21+x2dx=1∫0√1−x21+x2×√1−x21−x2dx=1∫01−x2√1−x4dx=1∫0(1−x4)−1/2dx−1∫0x2(1−x4)−1/2dxlet x=u1/4dx=14u−3/4du=1∫0(1−u)−1/2⋅14u−3/4du−1∫0u1/2(1−u)−1/2⋅14u−3/4du=141∫0u−3/4(1−u)−1/2⋅du−141∫0u−1/4(1−u)−1/2duB(m,n)=1∫0tm−1(1−t)n−1dtm1−1=−3/4n1−1=−1/2m2−1=−1/4n2−1=−1/2m1=1/4n1=1/2m2=3/4n2=1/2=14B(14,12)−14B(34,12)B(m,n)=Γ(m)Γ(n)Γ(m+n)=14(Γ(14)Γ(12)Γ(34)−Γ(34)Γ(12)Γ(54))=√π4(Γ(14)Γ(34)−Γ(34)Γ(54))=√π4(Γ(14)Γ(34)−Γ(34)14Γ(14))=√π4(Γ(14)Γ(34)−4Γ(34)Γ(14))
NB: this question has been edited post comments ,
Answer
I think you treat this question too complicated.
First it should note that integral of the form ∫10(1−x2)a(1+x2)b dx is impossible to have easy-look substitution to transform it to a integral of the form ∫10xp(1−x)q dx (i.e. beta function).
Second it should note that trigonometric substitution also often bring this type of question too complicated.
But I admit that this question has a level of lucky or tricky.
∫10√1−x21+x2 dx
=∫101−x2√1−x2√1+x2 dx
=∫101−x2√1−x4 dx
=∫10(1−x4)−12 dx−∫10x2(1−x4)−12 dx
=∫10(1−x)−12 d(x14)−∫10x12(1−x)−12 d(x14)
=14∫10x−34(1−x)−12 dx−14∫10x−14(1−x)−12 dx
=B(14,12)4−B(34,12)4
=Γ(14)Γ(12)4Γ(34)−Γ(34)Γ(12)4Γ(54)
=√π Γ(14)4Γ(34)−√π Γ(34)Γ(14)
=√π Γ(14)4×√2πΓ(14)−√π Γ(34)√2πΓ(34)
=14√2πΓ2(14)−1√2πΓ2(34)
No comments:
Post a Comment