Find remainder when $777^{777}$ is divided by $16$.
$777=48\times 16+9$. Then $777\equiv 9 \pmod{16}$.
Also by Fermat's theorem, $777^{16-1}\equiv 1 \pmod{16}$ i.e $777^{15}\equiv 1 \pmod{16}$.
Also $777=51\times 15+4$. Therefore,
$777^{777}=777^{51\times 15+4}={(777^{15})}^{51}\cdot777^4\equiv 1^{15}\cdot 9^4 \pmod{16}$ leading to $ 81\cdot81 \pmod{16} \equiv 1 \pmod{16}$.
But answer given for this question is $9$. Please suggest.
No comments:
Post a Comment