Monday, 26 September 2016

sequences and series - cos2(fracpi101)+cos2(frac2pi101)+cos2(frac3pi101)+...+cos2(frac100pi101)=?




Find the value: cos2(π101)+cos2(2π101)+cos2(3π101)+cos2(4π101)+cos2(5π101)++cos2(99π101)+cos2(100π101)





My attempt:I've tried it by considering the sum
sin2(π101)+sin2(2π101)+sin2(3π101)+sin2(4π101)+sin2(5π101)++sin2(99π101)+sin2(100π101)



along with



cos2(π101)+cos2(2π101)+cos2(3π101)+cos2(4π101)+cos2(5π101)++cos2(99π101)+cos2(100π101) which gives 100 as resultant but failed to separate the sum of
sin2(π101)+sin2(2π101)+sin2(3π101)+sin2(4π101)+sin2(5π101)++sin2(99π101)+sin2(100π101) at last.



I tried the next approach by using de Movire's theorem but failed to separate the real and imaginary part.




I've invested a great amount of time in the so it would be better if someone please come up with an answer.


Answer



cos(kπ101)=12(eikπ101+eikπ101)cos2(kπ101)=14(e2ikπ101+e2ikπ101+2)100k=1cos2(kπ101)=14100k=1(e2ikπ101+e2ikπ101+2)



Now,
1+100k=1e2ikπ101=100k=0(e2iπ101)k=1(e2iπ101)1011e2iπ101=01+100k=1e2ikπ101=100k=0(e2iπ101)k=1(e2iπ101)1011e2iπ101=0




Therefore
100k=1cos2(kπ101)=14(11+200)


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...