Find the value: $$\cos^2\left(\frac{\pi}{101}\right)+\cos^2\left(\frac{2\pi}{101}\right)+\cos^2\left(\frac{3\pi}{101}\right)+\cos^2\left(\frac{4\pi}{101}\right)+\cos^2\left(\frac{5\pi}{101}\right)+\cdots \\ \cdots+\cos^2\left(\frac{99\pi}{101}\right)+\cos^2\left(\frac{100\pi}{101}\right)$$
My attempt:I've tried it by considering the sum
$$\sin^2\left(\frac{\pi}{101}\right)+\sin^2\left(\frac{2\pi}{101}\right)+\sin^2\left(\frac{3\pi}{101}\right)+\sin^2\left(\frac{4\pi}{101}\right)+\sin^2\left(\frac{5\pi}{101}\right)+\cdots \\ \cdots+\sin^2\left(\frac{99\pi}{101}\right)+\sin^2\left(\frac{100\pi}{101}\right)$$
along with
$$\cos^2\left(\frac{\pi}{101}\right)+\cos^2\left(\frac{2\pi}{101}\right)+\cos^2\left(\frac{3\pi}{101}\right)+\cos^2\left(\frac{4\pi}{101}\right)+\cos^2\left(\frac{5\pi}{101}\right)+\cdots \\ \cdots +\cos^2\left(\frac{99\pi}{101}\right)+\cos^2\left(\frac{100\pi}{101}\right)$$ which gives $ 100$ as resultant but failed to separate the sum of
$$\sin^2\left(\frac{\pi}{101}\right)+\sin^2\left(\frac{2\pi}{101}\right)+\sin^2\left(\frac{3\pi}{101}\right)+\sin^2\left(\frac{4\pi}{101}\right)+\sin^2\left(\frac{5\pi}{101}\right)+\cdots\\ \dots+\sin^2\left(\frac{99\pi}{101}\right)+\sin^2\left(\frac{100\pi}{101}\right)$$ at last.
I tried the next approach by using de Movire's theorem but failed to separate the real and imaginary part.
I've invested a great amount of time in the so it would be better if someone please come up with an answer.
Answer
$$\cos\left(\frac{k\pi}{101}\right)= \frac{1}{2} \left(e^{i\frac{k\pi}{101}}+e^{-i\frac{k\pi}{101}} \right) \\
\cos^2\left(\frac{k\pi}{101}\right)= \frac{1}{4} \left(e^{2i\frac{k\pi}{101}}+e^{-2i\frac{k\pi}{101}} +2\right) \\
\sum_{k=1}^{100}\cos^2\left(\frac{k\pi}{101}\right)= \frac{1}{4} \sum_{k=1}^{100}\left(e^{2i\frac{k\pi}{101}}+e^{-2i\frac{k\pi}{101}} +2\right)
$$
Now,
$$1+\sum_{k=1}^{100}e^{2i\frac{k\pi}{101}}=\sum_{k=0}^{100}\left(e^{2i\frac{\pi}{101}}\right)^k=\frac{1-(e^{2i\frac{\pi}{101}})^{101}}{1-e^{2i\frac{\pi}{101}}}=0 \\
1+\sum_{k=1}^{100}e^{-2i\frac{k\pi}{101}}=\sum_{k=0}^{100}\left(e^{-2i\frac{\pi}{101}}\right)^k=\frac{1-(e^{-2i\frac{\pi}{101}})^{101}}{1-e^{-2i\frac{\pi}{101}}}=0 $$
Therefore
$$\sum_{k=1}^{100}\cos^2\left(\frac{k\pi}{101}\right)= \frac{1}{4} \left(-1-1+200\right) $$
No comments:
Post a Comment