Find the value: cos2(π101)+cos2(2π101)+cos2(3π101)+cos2(4π101)+cos2(5π101)+⋯⋯+cos2(99π101)+cos2(100π101)
My attempt:I've tried it by considering the sum
sin2(π101)+sin2(2π101)+sin2(3π101)+sin2(4π101)+sin2(5π101)+⋯⋯+sin2(99π101)+sin2(100π101)
along with
cos2(π101)+cos2(2π101)+cos2(3π101)+cos2(4π101)+cos2(5π101)+⋯⋯+cos2(99π101)+cos2(100π101) which gives 100 as resultant but failed to separate the sum of
sin2(π101)+sin2(2π101)+sin2(3π101)+sin2(4π101)+sin2(5π101)+⋯⋯+sin2(99π101)+sin2(100π101) at last.
I tried the next approach by using de Movire's theorem but failed to separate the real and imaginary part.
I've invested a great amount of time in the so it would be better if someone please come up with an answer.
Answer
cos(kπ101)=12(eikπ101+e−ikπ101)cos2(kπ101)=14(e2ikπ101+e−2ikπ101+2)100∑k=1cos2(kπ101)=14100∑k=1(e2ikπ101+e−2ikπ101+2)
Now,
1+100∑k=1e2ikπ101=100∑k=0(e2iπ101)k=1−(e2iπ101)1011−e2iπ101=01+100∑k=1e−2ikπ101=100∑k=0(e−2iπ101)k=1−(e−2iπ101)1011−e−2iπ101=0
Therefore
100∑k=1cos2(kπ101)=14(−1−1+200)
No comments:
Post a Comment