I'm trying to show the following identity,
m∑n=1n∏k=12k−12k=2(m+1)Γ(m+32)√πΓ(m+2).
First, simplify the product within the sum,
m∑n=1∏nk=1(2k−1)∏nk=1(2k)=m∑n=1(2n)!2nn!2nn!=m∑n=1(2n)!22n(n!)2
I'm not sure where to continue from here. I know the factorials will be rewritten as the Gamma function and I'm guessing the √π will come from Stirling's approximation. Where should I go from here?
Answer
m∑n=1n∏k=12k−12k=m∑n=1∏nk=1(k−1/2)∏nk=1k=m∑n=1(1/2)¯nn!=m∑n=1Γ(1/2+n)/Γ(1/2)n!=m∑n=1(n−1/2)!n!(−1/2)!=m∑n=1(n−1/2n)=[zm]∞∑ℓ=0zℓ[∞∑n=1(n−1/2n)[n≤ℓ]]=[zm]∞∑n=1(n−1/2n)∞∑ℓ=nzℓ=[zm]∞∑n=1(n−1/2n)∞∑ℓ=0zℓ+n=[zm]11−z∞∑n=1(n−1/2n)zn=[zm]11−z∞∑n=1(−1/2n)(−z)n=[zm]11−z[(1−z)−1/2−1]=[zm](1−z)−3/2−[zm](1−z)−1=(−3/2m)(−1)m−1=(m+1/2m)−1=(m+1/2)!m!(1/2)!−1=Γ(m+3/2)Γ(m+1)Γ(3/2)−1=Γ(m+3/2)[Γ(m+2)/(m+1)][Γ(1/2)/2]−1=2(m+1)Γ(m+3/2)√πΓ(m+2)−1
No comments:
Post a Comment