Monday, 1 May 2017

summation - Showing that summn=1prodnk=1frac2k12k=frac2(m+1)Gamma(m+frac32)sqrtpiGamma(m+2)



I'm trying to show the following identity,




mn=1nk=12k12k=2(m+1)Γ(m+32)πΓ(m+2).



First, simplify the product within the sum,



mn=1nk=1(2k1)nk=1(2k)=mn=1(2n)!2nn!2nn!=mn=1(2n)!22n(n!)2



I'm not sure where to continue from here. I know the factorials will be rewritten as the Gamma function and I'm guessing the π will come from Stirling's approximation. Where should I go from here?



Answer




mn=1nk=12k12k=mn=1nk=1(k1/2)nk=1k=mn=1(1/2)¯nn!=mn=1Γ(1/2+n)/Γ(1/2)n!=mn=1(n1/2)!n!(1/2)!=mn=1(n1/2n)=[zm]=0z[n=1(n1/2n)[n]]=[zm]n=1(n1/2n)=nz=[zm]n=1(n1/2n)=0z+n=[zm]11zn=1(n1/2n)zn=[zm]11zn=1(1/2n)(z)n=[zm]11z[(1z)1/21]=[zm](1z)3/2[zm](1z)1=(3/2m)(1)m1=(m+1/2m)1=(m+1/2)!m!(1/2)!1=Γ(m+3/2)Γ(m+1)Γ(3/2)1=Γ(m+3/2)[Γ(m+2)/(m+1)][Γ(1/2)/2]1=2(m+1)Γ(m+3/2)πΓ(m+2)1


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...