Monday, 3 April 2017

calculus - Evaluating $int_{0}^{infty} mathrm{erfc}(ax)exp(bx^2+cx)dx$

I tried to evaluate the integral below using differentiation under the integral sign and error function tables [1,2,3]:



$$I = \int_{0}^{\infty} \mathrm{erfc}(ax)\exp(bx^2+cx)dx.$$




Also, the approach in this question could not be applied since, like in my case, the lower limit is $0$ instead of $-\infty$.



The application is computational modeling.



Any help will be greatly appreciated.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...