How do we integrate the following?
$\int{\frac{\cos^4x + \sin^4x}{\sqrt{1 + \cos x}}dx}$ given that $\cos 2x \gt 0$
I tried to simplify this, but I cannot seem to proceed further than the below form:
$\int{\frac{\sec2x}{\sqrt{2}}dx + \sqrt{2}\int{\frac{\sin^2x\cos^2x}{\cos2x}dx}}$
$\implies \frac{1}{2\sqrt2}\log |\sec 2x + \tan 2x| + \sqrt{2}\int{\frac{\sin^2x\cos^2x}{\cos^2x-\sin^2x}dx} + C$
The answer that I'm supposed to get is:
$\frac{x}{\sqrt2}+C$
Please help, thanks!
Answer
Use $$\frac{\sin^4x+\cos^4x}{\sqrt{1+\cos4x}}=\frac{1-\frac{1}{2}\sin^22x}{\sqrt2\cos2x}=\frac{\frac{1}{2}+\frac{1}{2}\cos^22x}{\sqrt2\cos2x}=\frac{\cos2x}{2\sqrt2(1-\sin^22x)}+\frac{1}{2\sqrt2}\cos2x=$$
$$=\frac{1}{4\sqrt2}\left(\frac{\cos2x}{1+\sin2x}+\frac{\cos2x}{1-\sin2x}\right)+\frac{1}{2\sqrt2}\cos2x.$$
No comments:
Post a Comment