Saturday, 8 April 2017

calculus - Integral of $int{frac{cos^4x + sin^4x}{sqrt{1 + cos 4x}}dx}$



How do we integrate the following?




$\int{\frac{\cos^4x + \sin^4x}{\sqrt{1 + \cos x}}dx}$ given that $\cos 2x \gt 0$





I tried to simplify this, but I cannot seem to proceed further than the below form:




$\int{\frac{\sec2x}{\sqrt{2}}dx + \sqrt{2}\int{\frac{\sin^2x\cos^2x}{\cos2x}dx}}$



$\implies \frac{1}{2\sqrt2}\log |\sec 2x + \tan 2x| + \sqrt{2}\int{\frac{\sin^2x\cos^2x}{\cos^2x-\sin^2x}dx} + C$





The answer that I'm supposed to get is:




$\frac{x}{\sqrt2}+C$




Please help, thanks!


Answer



Use $$\frac{\sin^4x+\cos^4x}{\sqrt{1+\cos4x}}=\frac{1-\frac{1}{2}\sin^22x}{\sqrt2\cos2x}=\frac{\frac{1}{2}+\frac{1}{2}\cos^22x}{\sqrt2\cos2x}=\frac{\cos2x}{2\sqrt2(1-\sin^22x)}+\frac{1}{2\sqrt2}\cos2x=$$
$$=\frac{1}{4\sqrt2}\left(\frac{\cos2x}{1+\sin2x}+\frac{\cos2x}{1-\sin2x}\right)+\frac{1}{2\sqrt2}\cos2x.$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...