Wednesday, 12 April 2017

complex analysis - Prove the taylor series of $ cos(2z)$



First i turned $$\cos(2z) = \frac{e^{2iz} + e^{-2iz}}{2}$$, then using the taylor series of $$e^{z}$$I calculated the taylor series of both arguments.
$$\frac{e^{2iz}}{2} = \sum_{n=0}^{\infty }\frac{(i)^{n}2^{n-1}z^{n}}{n!}$$
$$\frac{e^{-2iz}}{2}= \sum_{n=0}^{\infty }\frac{(-i)^{n}2^{n-1}z^{n}}{n!}$$
From this stage i dont know how to continue.
Is my way to the solution is right?


Answer




Hint:
$$(i)^n+(-i)^n=e^{\frac{in\pi}{2}}+e^{\frac{-in\pi}{2}}=2\cos{\dfrac{n\pi}{2}}.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...