Wednesday, 12 April 2017

How can the decimal expansion of this rational number not be periodic?




I just noticed that dividing $1 \div 998$ gives me the apparently non-periodic



$$0.001002004008016032064\ldots ,$$



which is $$10^{-3} + 2\times 10^{-6} + 4\times10^{-9} + 8\times 10^{-12} + \cdots = \sum_{i=0}^\infty 2^i 10^{-3(i+1)}.$$



Since every rational number expands into a finite or periodic decimal expansion, does that become periodic somehow? If so, how?


Answer



It does repeat, but with a very long period: Factoring the denominator into primes gives
$$998 = 2 \cdot \color{#3f3fff}{499};$$

since $2$ is a factor of $10$ and $10$ is a primitive root modulo $\color{#3f3fff}{499}$, the period of repetition is $\color{#3f3fff}{499} - 1 = 498$ digits long. Indeed, consulting WolframAlpha gives:



$$\color{#bf0000}{
\begin{align}
\smash{\frac{1}{998}} =
0.&\overline{00100200400801603206412825651302605210420841683366733466}\\
&\overline{93386773547094188376753507014028056112224448897795591182}\\
&\overline{36472945891783567134268537074148296593186372745490981963}\\
&\overline{92785571142284569138276553106212424849699398797595190380}\\
&\overline{76152304609218436873747494989979959919839679358717434869}\\

&\overline{73947895791583166332665330661322645290581162324649298597}\\
&\overline{19438877755511022044088176352705410821643286573146292585}\\
&\overline{17034068136272545090180360721442885771543086172344689378}\\
&\overline{7575150300601202404809619238476953907815631262525050}.
\end{align}
}$$



(The is analogous to the repetition of the decimal digits of, e.g., $1 / 14$: We have $14 = 2 \cdot 7$ and that $10$ is a primitive root modulo $7$, so the period of the decimal expansion of $1 / 14$ is $7$.)


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...