Saturday, 8 April 2017

real analysis - Cauchy’s functional equation for non-negative arguments



Function $f:[0,+\infty)\rightarrow\mathbb{R}$ satisfies $f(x+y)=f(x)+f(y)$ for every non-negative $x$ and $y$. It’s bounded from below with some non-positive constant $m$. Does it imply that $f$ has the form $f(x)=cx$ or is there another function satisfying these conditions?


Answer



Yes.




It follows easily from induction that $f(nx)=nf(x) \, \forall n \in \mathbb{Z}^+$. Thus $f(\frac{m}{n})=\frac{1}{n}f(m)=\frac{m}{n}f(1)$.



If $f(y)<0$ for some $y \in[0, +\infty)$, then $f(ny)=nf(y)

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...