Function $f:[0,+\infty)\rightarrow\mathbb{R}$ satisfies $f(x+y)=f(x)+f(y)$ for every non-negative $x$ and $y$. It’s bounded from below with some non-positive constant $m$. Does it imply that $f$ has the form $f(x)=cx$ or is there another function satisfying these conditions?
Answer
Yes.
It follows easily from induction that $f(nx)=nf(x) \, \forall n \in \mathbb{Z}^+$. Thus $f(\frac{m}{n})=\frac{1}{n}f(m)=\frac{m}{n}f(1)$.
If $f(y)<0$ for some $y \in[0, +\infty)$, then $f(ny)=nf(y)
No comments:
Post a Comment