Sunday, 7 May 2017

Cauchy functional equation

Is there $U\subset \Bbb R^2$ with Lebesgue measure $0$ such that




$$f(x+y)=f(x)+f(y)$$
for all $(x, y)\in U$ implies $f(x+y)=f(x)+f(y)$ for all $(x, y)\in\Bbb R^2$ ?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...