Is there $U\subset \Bbb R^2$ with Lebesgue measure $0$ such that
$$f(x+y)=f(x)+f(y)$$
for all $(x, y)\in U$ implies $f(x+y)=f(x)+f(y)$ for all $(x, y)\in\Bbb R^2$ ?
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment