Sunday, 7 May 2017

calculus - Double integral with two variables in the exponential: intp0iinti0nftyeibxcosthetax/ax2sintheta dx dtheta.




I'm having trouble with the substitutions in the following integral:




π00eibxcosθx/ax2sinθ dx dθ




My attempt:



Let u=cosθ

then du=sinθ dθ




Then we have



1π00eibxux/ax2 du dx



How do I separate the u out of the exponential to integrate separately with respect to u and then x? Am I doing the wrong substitution?


Answer



π00eibxcosθ1axx2sinθ dx dθ=110eibxuxax2 dx du=0(11eibxuxax2 du) du=0x2exa(eibxibxeibxibx) du=2b0xe1axsinbxdx=2bL(xsinbx)|s=1a=2b21a b(1a2+b2)2=4a3(1+a2b2)2


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...