Sunday, 7 May 2017

definite integrals - How to show that $ int_0^infty frac{1}{sqrt {t(t^2+21t+112)}} dt=frac{1}{4pisqrt {7}}Gamma(frac{1}{7})Gamma(frac{2}{7})Gamma(frac{4}{7})$

I've already known that
$$ \int \limits_0^\infty \frac{1}{\sqrt {t(t^2+21t+112)}} \mathrm{d}t=\frac{1}{4\pi\sqrt {7}}\Gamma(\frac{1}{7})\Gamma(\frac{2}{7})\Gamma(\frac{4}{7})$$




To get this answer, I let $\mathrm{d}u=\mathrm{d}\sqrt{t}$, then got



$$ \int \limits_0^\infty \frac{1}{\sqrt {t(t^2+21t+112)}} \mathrm{d}t=2\int \limits_0^\infty \frac{1}{\sqrt {u^4+21u^2+112}} \mathrm{d}u$$



$$2\int \limits_0^\infty \frac{1}{\sqrt {u^4+21u^2+112}} \mathrm{d}u=2\int \limits_0^\infty \frac{1}{\sqrt {u^2+\frac{21}{2}+\sqrt{\frac{7}{4}}i}{\sqrt {u^2+\frac{21}{2}-\sqrt{\frac{7}{4}}i}}} \mathrm{d}u$$



and it was pretty like Incomplete elliptic integral of the first kind.



But, how to carry on?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...