Sunday, 26 May 2019

elementary set theory - Let $A,B,C$ be sets, and $B cap C=emptyset$. Show $|A^{B cup C}|=|A^B times A^C|$




Let $A,B,C$ be sets, and $B \cap C=\emptyset$. Show $|A^{B \cup C}|=|A^B \times A^C|$ by defining a bijection $f:A^{B \cup C} \rightarrow A^B \times A^C$.



Any hints on this one?



Thank you!


Answer



Hint: If $f$ is a function is a function from $B\cup C$ to $A$, let $f_B$ ($f$ restricted to $B$) be the function from $B$ to $A$ defined by $f_B(b)=f(b)$. Define $f_C$ analogously.



Now show that the mapping $\varphi$ which takes any $f$ in $A^{B\cup C}$ to the ordered pair $(f_B,f_C)$ is a bijection from $A^{B\cup C}$ to $A^B\times A^C$.



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...