I would like to prove that:
lim
I thought to write \sqrt[k] {k} = e^{\frac{\ln({k})}{k}} but I don't know how to continue.
Answer
Use Stolz–Cesàro theorem or a version of it here.
\lim\limits_{n \rightarrow +\infty} \frac{\sum\limits_{k=1}^{n+1} \sqrt[k] {k} -\sum\limits_{k=1}^{n} \sqrt[k] {k} }{n+1 - n}= \lim\limits_{n \rightarrow +\infty}\sqrt[n+1] {n+1} =1
No comments:
Post a Comment