Saturday 25 May 2019

real analysis - Find $lim_{n to infty} frac{(sqrt[n]{(7^n+n)}-frac{1}{7})^n}{7^n-n^7}$





Find
$$\lim_{n \to \infty} \frac{(\sqrt[n]{(7^n+n)}-\frac{1}{7})^n}{7^n-n^7}$$




I know that it can be done with using the squeeze theorem but I cannot find a proper upper bound limit


Answer



You may write
$$
\begin{align}
\frac{(\sqrt[n]{(7^n+n)}-\frac{1}{7})^n}{7^n-n^7}&=\frac{\left(7\left(1+\frac{n}{7^n}\right)^{1/n}-\frac{1}{7}\right)^n}{7^n\left(1-\frac{n^7}{7^n}\right)}\\\\

&=\frac{7^n\left(1+\mathcal{O}\left(\frac{1}{7^n}\right)-\frac{1}{49}\right)^n}{7^n\left(1-\frac{n^7}{7^n}\right)}\\\\
&=\frac{\left(1+\mathcal{O}\left(\frac{1}{7^n}\right)-\frac{1}{49}\right)^n}{\left(1-\frac{n^7}{7^n}\right)}\\\\
&=\frac{\left(\frac{48}{49}\right)^n\left(1+\mathcal{O}\left(\frac{1}{7^n}\right)\right)^n}{1-\frac{n^7}{7^n}}\\\\
&=\frac{\left(\frac{48}{49}\right)^n\left(1+\mathcal{O}\left(\frac{n}{7^n}\right)\right)}{1-\frac{n^7}{7^n}}\\\\
& \sim \left(\frac{48}{49}\right)^n
\end{align}
$$ and the desired limit is equal to $0$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...