Let a and b be integers ≥1. prove the following:
(2a−1)|(2ab−1)
My attempt:
2ab−1=(2a)b−1
=(2a−1)((2a)b−1+(2a)b−2+...+2a+1)
Since (2a)b−1+(2a)b−2+...+2a+1∈Z,
then
(2^{ab}-1)\equiv 0 \mod (2^a-1).
Is that true, please ?
How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment