Saturday, 18 May 2019

number theory - Let a and b be integers ge1. prove that (2a1)|(2ab1).



Let a and b be integers 1. prove the following:



(2a1)|(2ab1)




My attempt:



2ab1=(2a)b1



=(2a1)((2a)b1+(2a)b2+...+2a+1)




Since (2a)b1+(2a)b2+...+2a+1Z,
then



(2^{ab}-1)\equiv 0 \mod (2^a-1).



Is that true, please ?

No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...