Let $a$ and $b$ be integers $\ge 1$. prove the following:
$(2^a-1) | (2^{ab}-1)$
My attempt:
$2^{ab}-1=(2^a)^b-1$
$= (2^a-1)((2^a)^{b-1}+(2^a)^{b-2}+...+2^a+1)$
Since $(2^a)^{b-1}+(2^a)^{b-2}+...+2^a+1\in \Bbb{Z}$,
then
$(2^{ab}-1)\equiv 0 \mod (2^a-1)$.
Is that true, please ?
No comments:
Post a Comment