Saturday, 18 May 2019

number theory - Let $a$ and $b$ be integers $ge 1$. prove that $(2^a-1) | (2^{ab}-1)$.



Let $a$ and $b$ be integers $\ge 1$. prove the following:



$(2^a-1) | (2^{ab}-1)$




My attempt:



$2^{ab}-1=(2^a)^b-1$



$= (2^a-1)((2^a)^{b-1}+(2^a)^{b-2}+...+2^a+1)$




Since $(2^a)^{b-1}+(2^a)^{b-2}+...+2^a+1\in \Bbb{Z}$,
then



$(2^{ab}-1)\equiv 0 \mod (2^a-1)$.



Is that true, please ?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...