I'm sorry if this is duplicated, but I can not find any answer to it.
Answer
the geometric series for $|x|<1$
$$1+x+x^2+x^3+....=\frac{1}{1-x}$$
use $x=0.5$
$$1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...=\frac{1}{1-\frac{1}{2}}=2$$
I'm sorry if this is duplicated, but I can not find any answer to it.
Answer
the geometric series for $|x|<1$
$$1+x+x^2+x^3+....=\frac{1}{1-x}$$
use $x=0.5$
$$1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...=\frac{1}{1-\frac{1}{2}}=2$$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment