Problem:
How to find the following limit :
lim is equal to
(a) \frac{4}{e}
(b) \frac{3}{e}
(c) \frac{1}{e}
(d) e
Please suggest how to proceed in this problem thanks...
Answer
\log\left(\lim_{n \to \infty}[(1+\frac{1}{n})(1+\frac{2}{n})\cdots(1+\frac{n}{n})]^{\frac{1}{n}}\right) =\lim_{n \to \infty}\frac{\log(1+\frac{1}{n})+\log(1+\frac{2}{n})+\cdots+\log(1+\frac{n}{n})}{n} =\int_{1}^2 \log(1+x)dx= [x\log(x)-x]_{x=1}^{x=2}=2\log(2)-1
This yields the solution e^{2\log(2)-1}=4/e.
No comments:
Post a Comment