Problem:
How to find the following limit :
$$\lim_{n \to \infty}[(1+\frac{1}{n})(1+\frac{2}{n})\cdots(1+\frac{n}{n})]^{\frac{1}{n}}$$ is equal to
(a) $\frac{4}{e}$
(b) $\frac{3}{e}$
(c) $\frac{1}{e}$
(d) $e$
Please suggest how to proceed in this problem thanks...
Answer
$$\log\left(\lim_{n \to \infty}[(1+\frac{1}{n})(1+\frac{2}{n})\cdots(1+\frac{n}{n})]^{\frac{1}{n}}\right) =\lim_{n \to \infty}\frac{\log(1+\frac{1}{n})+\log(1+\frac{2}{n})+\cdots+\log(1+\frac{n}{n})}{n} =\int_{1}^2 \log(1+x)dx= [x\log(x)-x]_{x=1}^{x=2}=2\log(2)-1$$
This yields the solution $e^{2\log(2)-1}=4/e$.
No comments:
Post a Comment