Thursday, 30 May 2019

sequences and series - Limits Problem : limntoinfty[(1+frac1n)(1+frac2n)cdots(1+fracnn)]frac1n is equal to..





Problem:



How to find the following limit :



lim is equal to



(a) \frac{4}{e}



(b) \frac{3}{e}




(c) \frac{1}{e}



(d) e



Please suggest how to proceed in this problem thanks...


Answer



\log\left(\lim_{n \to \infty}[(1+\frac{1}{n})(1+\frac{2}{n})\cdots(1+\frac{n}{n})]^{\frac{1}{n}}\right) =\lim_{n \to \infty}\frac{\log(1+\frac{1}{n})+\log(1+\frac{2}{n})+\cdots+\log(1+\frac{n}{n})}{n} =\int_{1}^2 \log(1+x)dx= [x\log(x)-x]_{x=1}^{x=2}=2\log(2)-1



This yields the solution e^{2\log(2)-1}=4/e.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...