The integral
∫l0xnsin(mπxl)dx
frequently arises for computing Fourier coefficients, for m,n integers. Is there any general formula for that? What about cos instead of sin?
Answer
Jsin=∫l0xnsin(mπxl)dx
Jsin=1n+2(πmln+1F12(n2+1;32,n2+2;−14m2π2))
withℜ(n)>2
and Fpq(a1...ap;b1...bq;z)
is the generalized Hypergeometric function.
Jcos=∫l0xncos(mπxl)dx
Jcos=1n+2(ln+1F12(n2+12;12,n2+32;−14m2π2))
ℜ(n)>−1
No comments:
Post a Comment