Wednesday, 22 May 2019

Reducing double summation to geometric series

How can I reduce this summation to a geometric series?



$\displaystyle\sum\limits_{i=0}^n x^{25i}\cdot\displaystyle\sum\limits_{j=i}^n x^{5j}$



I'm a little confused since the second summation begins at $i$.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...