How can I reduce this summation to a geometric series?
$\displaystyle\sum\limits_{i=0}^n x^{25i}\cdot\displaystyle\sum\limits_{j=i}^n x^{5j}$
I'm a little confused since the second summation begins at $i$.
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment