Take $p_1, p_2, \ldots, p_n, p_{n+1}$ be $n+1$ prime numbers in $\mathbb{P} \subseteq \mathbb{N}$. $\sqrt{p_{n+1}} \notin \mathbb{Q}(\sqrt{p_1}, \sqrt{p_2}, \ldots, \sqrt{p_n})$ seems to be quite clear, but still need a proof. I know some proofs are involved with Galois theory, which is not I want.
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
I'm just learning how to test series for convergence and have encountered this series from the Demidovich's book and I can't rea...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment