Tuesday, 18 December 2012

calculus - How to evaluate $intsin ^3 xcos^3 x:dx$ without a reduction formula?




We have the integral $$\displaystyle\int \sin ^3 x \cos^3 x \:dx.$$ You can do this using the reduction formula, but I wonder if there's another (perhaps simpler) way to do this, like for example with a substitution?


Answer



Hint. You may write
$$
\sin^3 x \cos^3 x= \sin x(1 - \cos^2x)\cos^3 x=\sin x(\cos^3x - \cos^5x)
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...