Friday, 7 December 2012

Sum of product of squared binomial coefficients




Similar to the sum of product of binomial coefficients—what happens when I square the binomial coefficients? Is there a nice closed formula for that?



More precisely, I'm interested in the special case where the ki are all equal to the sum of all xi (to use the notation of the question linked above), which I'll call m (not necessarily equal to n here).



So what I'm looking for is making the following sum tractable:



S_{n,m}=\sum_{x_1+\ldots+x_n=m}\prod_{i=1}^{n}{\binom{m}{x_i}^2}



My goal is to show that S_{n,m}\cdot n^{-2m} decreases as the number of summands, n, grows. I've tried expanding n^{2m}:




n^{2m} = \sum_{y_1+\ldots+y_n=2m}{\binom{2m}{y_1,\ldots,y_n}} = \sum_{y_1+\ldots+y_n=2m} {\prod_{i=1}^{w} {\binom{\sum_{j=1}^{i}{y_j}}{y_i}}}



but I didn't get anywhere with that. I'd be grateful for any pointers on how to approach this.


Answer




We consider the generating function
\begin{align*} S_m(x)=\sum_{j=0}^m\binom{m}{j}^2x^j\qquad\qquad m\geq 0 \end{align*}
Note S_{n,m} is the coefficient of x^m of \left(S_m(x)\right)^n.

\begin{align*} S_{n,m}=\sum_{{x_1+\ldots+x_n=m}\atop{x_j\geq 0}}\prod_{i=1}^{n}{\binom{m}{x_i}^2} =[x^m]\left(S_m(x)\right)^n \end{align*}




We can represent S_m(x) in terms of Legendre polynomials P_m(x). From the representation
\begin{align*} P_m(x)=\frac{1}{2^m}\sum_{j=0}^m\binom{m}{j}^2(x-1)^{m-j}(x+1)^j \end{align*}

we obtain



\begin{align*} P_m\left(\frac{x+1}{x-1}\right) &=\frac{1}{2^m}\sum_{j=0}^m\binom{m}{j}^2\left(\frac{x+1}{x-1}-1\right)^{m-j}\left(\frac{x+1}{x-1}+1\right)^j\\ &=\frac{1}{2^m}\sum_{j=0}^m\binom{m}{j}^2\frac{2^{m-j}}{(x-1)^{m-j}}\cdot \frac{(2x)^j}{(x-1)^j}\\ &=\frac{1}{(x-1)^m}\sum_{j=0}^m\binom{m}{j}^2x^j\tag{1} \end{align*}





Multiplication of (1) with (x-1)^m gives
\begin{align*} S_m(x)=(x-1)^mP_m\left(\frac{x+1}{x-1}\right)\qquad\qquad m\geq 0 \end{align*}
and we finally conclude
\begin{align*} S_{n,m}&=[x^m]\left(S_m(x)\right)^n\\ &=[x^m](x-1)^{mn}P_m\left(\frac{x+1}{x-1}\right)^n\qquad\qquad n\geq 1,m\geq 0 \end{align*}





Example: S_{3,1} to S_{3,3}



At first wie calculate S_{3,1} to S_{3,3} according to the OPs definition of S_{n,m}. The we look at the coefficients of the corresponding transformed Legendre polynomials.



\begin{align*} S_{3,1}&=\sum_{{x_1+x_2+x_3=1}\atop{x_j\geq 0}}\prod_{i=1}^3\binom{1}{x_i}^2 =\frac{3!}{2!1!}\binom{1}{0}^2\binom{1}{0}^2\binom{1}{1}^2\\ &=\color{blue}{3}\\ S_{3,2}&=\sum_{{x_1+x_2+x_3=2}\atop{x_j\geq 0}}\prod_{i=1}^3\binom{2}{x_i}^2\\ &=\frac{3!}{2!1!}\binom{2}{0}^2\binom{2}{0}^2\binom{2}{2}^2 +\frac{3!}{1!2!}\binom{2}{0}^2\binom{2}{1}^2\binom{2}{1}^2\\ &=3+48\\ &=\color{blue}{51}\\ S_{3,3}&=\sum_{{x_1+x_2+x_3=3}\atop{x_j\geq 0}}\prod_{i=1}^3\binom{3}{x_i}^2\\ &=\frac{3!}{2!1!}\binom{3}{0}^2\binom{3}{0}^2\binom{3}{3}^2 +\frac{3!}{1!1!1!}\binom{3}{0}^2\binom{3}{1}^2\binom{3}{2}^2\\ &\qquad+\frac{3!}{3!}\binom{3}{1}^2\binom{3}{1}^2\binom{3}{1}^2\\ &=3+486+729\\ &=\color{blue}{1218} \end{align*}



On the other hand we obtain with some help of Wolfram Alpha
\begin{align*} S_1(x)&=(x-1)P_1\left(\frac{x+1}{x-1}\right)\\ &=1+x\\ S_1^2(x)&=1+2x+x^2\\ S_1^3(x)&=1+\color{blue}{3}x+3x^2+x^3\\ \\ S_2(x)&=(x-1)^2P_2\left(\frac{x+1}{x-1}\right)\\ &=1+4x+x^2\\ S_2^2(x)&=1+8x+18x^2+8x^3+x^4\\ S_2^3(x)&=1+12x+\color{blue}{51}x^2+88x^3+51x^4+12x^5+x^6\\ \\ S_3(x)&=(x-1)^3P_3\left(\frac{x+1}{x-1}\right)\\ &=1+9x+9x^2+x^3\\ S_3^2(x)&=1+18x+99x^2+164x^3+99x^4+18x^5+x^6\\ S_3^3(x)&=1+27x+270x^2+\color{blue}{1218}x^3+2484x^4+2484x^5+1218x^6+270x^7+27x^8+x^9 \end{align*}

with corresponding coefficients marked in \color{blue}{\text{blue}}.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...