$$\lim_{n\to ∞}\frac{1}{n}\log{{n\choose 2\alpha n}}=\frac{3}{2}((1-2\alpha) \log{2\alpha}+2\alpha\log2\alpha)$$
such that $2\alpha n\le n$
I tried to use Stirling formula and we get
$$\lim_{n\to ∞}\frac{1}{n}\log{{n\choose 2\alpha n}}=\lim_{n\to ∞}\frac{1}{n}\log\frac{n^{\frac{3n}{2}}}{2\pi(n-2\alpha n)^{\frac{3((n-2\alpha n)}{2}{(2\alpha n)}^{3\alpha n}}}=$$
$$=\lim_{n\to ∞}\log{\frac{n^{\frac{3}{2}}}{2\pi(n-2\alpha n)^{\frac{3((1-2\alpha )}{2}{(2\alpha n)}^{3\alpha }}}}$$
but I couldn't continue
No comments:
Post a Comment