limn→∞1nlog(n2αn)=32((1−2α)log2α+2αlog2α)
such that 2αn≤n
I tried to use Stirling formula and we get
limn→∞1nlog(n2αn)=limn→∞1nlogn3n22π(n−2αn)3((n−2αn)2(2αn)3αn=
=limn→∞logn322π(n−2αn)3((1−2α)2(2αn)3α
but I couldn't continue
How to find limh→0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment