Saturday, 15 December 2012

limits - Proving $lim_{xtoinfty} (x^2 +1)(frac{pi}{2} - arctan{x}) $ doesn't exist.

How can I show that $$\lim_{x\to\infty} (x^2 +1)(\frac{\pi}{2} - \arctan{x}) $$ doesn't exist? I used the fact that $$\arctan{x}\ge x-\frac{x^3} {3}, $$ so the initial limit is less than $$\lim_{x\to\infty} \frac{x^5}{3} +O(x^4),$$ therefore the limit tends to infinity.



Is this enough? If not, then how can I show this rigorously?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...