Thursday, 27 December 2012

summation - Proving this inequality by mathematical induction




I want to prove this inequality:



$$ \sum\limits_{i=1}^{2^n} \frac{1}{i} \geq 1 + \frac{n}{2}.$$



So, if I suppose that the inequality holds for a natural number $k$, then



$$ \sum\limits_{i=1}^{2^{k+1}} \frac{1}{i} = {\sum\limits_{i=1}^{2^k} \frac{1}{i}} + {\sum\limits_{i=2^{k}+1}^{2^{k+1}} \frac{1}{i}}.$$



Thus, I just have to prove that $\sum\limits_{i=2^{k}+1}^{2^{k+1}} \frac{1}{i} \geq \frac{1}{2}$, but I'm stuck on this. I know there are $2^{k}$ natural numbers bewteen $2^k$ and $2^{k+1}$, but I'm not sure how to use it . I'd appreciate your help.



Answer



It's enough to prove that
$$1+\frac{n}{2}+\frac{1}{2^n+1}+\frac{1}{2^n+2}+...+\frac{1}{2^{n+1}}\geq1+\frac{n+1}{2}$$ or
$$\frac{1}{2^n+1}+\frac{1}{2^n+2}+...+\frac{1}{2^{n+1}}\geq\frac{1}{2},$$
which is true because
$$\frac{1}{2^n+1}+\frac{1}{2^n+2}+...+\frac{1}{2^{n+1}}\geq\frac{1}{2^{n+1}}+\frac{1}{2^{n+1}}+...+\frac{1}{2^{n+1}}=\frac{2^n}{2^{n+1}}=\frac{1}{2}.$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...