Saturday, 22 December 2012

Limit of goniometric function without l'Hospital's rule




I'm trying figure this out without l'Hospital's rule. But I don't know how should I start. Any hint, please?



lim


Answer



Set t=\frac \pi2 - x,
\lim_{x\to {\pi\over 2}} \frac {1-\sin x}{(\frac\pi2 -x)^2}=\lim_{t\to {0}} \frac {1-\cos t}{t^2}=\lim_{t\to {0}} \frac {2 \sin ^2(t/2)}{4(t/2)^2}={1\over 2}


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...