$\sum_{n \in \mathbb{N}} ||f_{n}-f||_{1} < \infty$ implies $f_{n}$ converges almost uniformly to $f$, how to show this?
EDIT: Egorov's theorem is available. I have been able to show pointwise a.e. convergence using Chebyshev and Borel-Cantelli, I am having trouble trying to pass to almost uniform convergence using the absolute summability condition...
Answer
Put $g_n:=|f_n-f|$, and fix $\delta>0$. We have $\sum_{n\in\mathbb N}\lVert g_n\rVert_{L^1}<\infty$ so we can find a strictly increasing sequence $N_k$ of integers such that $\sum_{n\geq N_k}\lVert g_n\rVert_1\leq \delta 4^{-k}$. Put $A_k:=\left\{x\in X:\sup_{n\geq N_k}g_n(x)>2^{1-k}\right\}$. Then $A_k\subset\bigcup_{n\geq N_k}\left\{x\in X: g_n(x)\geq 2^{-k}\right\}$ so
$$2^{-k}\mu(A_k)\leq \sum_{n\geq N_k}2^{-k}\mu\left\{x\in X: g_n(x)\geq 2^{-k}\right\}\leq \sum_{n\geq N_k}\lVert g_n\rVert_1\leq \delta 4^{-k},$$
so $\mu(A_k)\leq \delta 2^{-k}$. Put $A:=\bigcup_{k\geq 1}A_k$. Then $\mu(A)\leq \sum_{k\geq 1}\mu(A_k)\leq \delta\sum_{k\geq 1}2^{-k}=\delta$, and if $x\notin A$ we have for all $k$: $\sup_{n\geq N_k}g_n(x)\leq 2^{1-k}$ so $\sup_{n\geq N_k}\sup_{x\notin A}g_n(x)\leq 2^{1-k}$. It proves that $g_n\to 0$ uniformly on $A^c$, since for a fixed $\varepsilon>0$, we take $k$ such that $2^{1-k}$, so for $n\geq N_k$ we have $\sup_{x\notin A}g_n(x)\leq\varepsilon$.
No comments:
Post a Comment