Consider the integral $I=\int_{-\infty}^{\infty} \frac{1}{x^{2}+1}\, dx$. Show how to evaluate this integral by considering $\oint_{C_{(R)}} \frac{1}{z^{2}+1}, dz$ where $C_{R}$ is the closed semicircle in the upper half plane with endpoints at $(-R, 0)$ and $(R, 0)$ plus the $x$ axis.
I use $\frac{1}{z^{2}+1}=-\frac{1}{2i}\left[\frac{1}{z+i}-\frac{1}{z-i}\right]$ and I must prove without using the residue theorem the integral along the open semicircle in the upper half plane vanishes as $R\rightarrow \infty$
Could someone help me through this problem?
No comments:
Post a Comment