Monday, 24 December 2012

calculus - Is there a general form for $a_n=sqrt{2+a_{n-1}}$?




Can I find the general term of this sequence $a_n=\sqrt{2+a_{n-1}}$, $a_1=\sqrt2$? I have proved the convergence. And found its limit. But is there any general form for it?


Answer



Hint: If $a_n=2 \cos(\theta_n)$ with $0 < \theta_n<\pi/2$, then:




$\sqrt{2+a_n}=\sqrt{2+2 \cos(\theta_n)}$



$=2 \sqrt{(1+\cos(\theta_n))/2}$



$=2 \cos((\theta_n)/2)$ using the appropriate half-angle formula.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...