is it true that ζ(s)= lima→0+ 1+∞∑m=1e−sma⌊e(m+1)a−ema⌋
my proof :
F(z)=ζ(−lnz)=∞∑n=1zlnn
which is convergent for |z|<1e. now I consider the functions :
˜Fa(z)=∞∑n=1za⌊lnna⌋=1+∞∑m=0zan⌊ea(m+1)−eam⌋
because lima→0+a⌊lnna⌋=lnn, we get that :
lima→0+ ˜Fa(z)=∞∑n=1zlnn=ζ(−lnz)
(details)
∞∑m=0zam⌊ea(m+1)−eam⌋
is also convergent for z<1e because ∞∑m=0(zaea)m is convergent for z<1e and ∞∑m=0zam{ea(m+1)−eam} is convergent for z<1.
to justify ∞∑n=1za⌊lnna⌋=1+∞∑m=1zam⌊ea(m+1)−eam⌋ : if ⌊lnna⌋=m≠0 then
lnna∈[m,m+1[⟹n∈[eam,ea(m+1)[ . how many different n's is that ? ⌊ea(m+1)−eam⌋.
No comments:
Post a Comment