If a, b, c are in arithmetic progression, prove that
cosAcotA2cosBcotB2cosCcotC2
are in arithmetic progression, too.
Here, a, b, c represent the sides of a triangle and A, B, C are the opposite angles of the triangle.
Answer
For better clarity, I'm adding another proof that cotA2,cotB2,cotC2 are also in AP if a,b,c are so.
We have $\displaystyle0
So, cotC2=1tanC2=+√1+cosA1−cosA
Using Law of Cosines and on simplification, cotC2=+√s(s−c)(s−b)(s−a) where 2s=a+b+c
cotA2,cotB2,cotC2 will be in AP
⟺√s(s−c)(s−b)(s−a)+√s(s−a)(s−b)(s−c)=√s(s−b)(s−c)(s−a)
⟺s−a+s−c=2(s−b)⟺a+c=2b
No comments:
Post a Comment