I have recently met with this integral:
∫10ln(1+xa)1+xdx
I want to evaluate it in a closed form, if possible.
1st functional equation:
f(a)=ln22−f(1a) since:
f(a)=∫10ln(1+xa)1+xdx=∫10ln(1+xa)(ln(1+x))′dx=ln22−∫10axa−1ln(1+x)1+xadxy=xa===ln22−∫10ay(a−1)/aln(1+y1/a)1+y1ay(1−a)/ady=ln22−f(1a)
2nd functional equation:
f(a)=−aπ212+f(−a) since:
f(a)=∫10ln(1+xa)1+xdx=∫10ln(xa(1+x−a))1+xdx=a∫10lnx1+xdx+∫10ln(1+x−a)1+xdx=a∫10lnx1+xdx+f(−a)=a∫10lnx∞∑n=0(−1)nxndx+f(−a)=a∞∑n=0(−1)n∫10lnx⋅xndx+f(−a)=⋯=−aπ212+f(−a)
What I did try was:
1st way
∫10log(1+xa)1+xdx=∫10log(1+xa)∞∑n=0(−1)nxndx=∞∑n=0(−1)n∫10log(1+xa)xndx=∞∑n=0(−1)n{[xn+1log(1+xa)n+1]10−an+1∫10xn+1xa−11+xadx}
2nd way
I tried IBP but I get to an unpleasant integral of the form ∫10ln(1+x)xa−11+xadx.
3nd way
It was just an idea ... expand the nominator into Taylor Series , swip integration and summation and get into a digamma form . This way suggests that a closed form is far away ... since we are dealing with digammas here.
The result I got was:
∫1011+x∞∑k=1(−1)k−1kxak=∞∑k=1(−1)k−1k∫10xak1+xdx=1/2∞∑k=1(−1)k−1k[ψ(ak2+1)−ψ(ak2+1/2)]
and I can't go on.
No comments:
Post a Comment