Thursday, 14 March 2013

calculus - Integrate int10fracln(1+xa)1+x,dx

I have recently met with this integral:
10ln(1+xa)1+xdx




I want to evaluate it in a closed form, if possible.



1st functional equation:



f(a)=ln22f(1a) since:
f(a)=10ln(1+xa)1+xdx=10ln(1+xa)(ln(1+x))dx=ln2210axa1ln(1+x)1+xadxy=xa===ln2210ay(a1)/aln(1+y1/a)1+y1ay(1a)/ady=ln22f(1a)



2nd functional equation:



f(a)=aπ212+f(a) since:



f(a)=10ln(1+xa)1+xdx=10ln(xa(1+xa))1+xdx=a10lnx1+xdx+10ln(1+xa)1+xdx=a10lnx1+xdx+f(a)=a10lnxn=0(1)nxndx+f(a)=an=0(1)n10lnxxndx+f(a)==aπ212+f(a)



What I did try was:



1st way

10log(1+xa)1+xdx=10log(1+xa)n=0(1)nxndx=n=0(1)n10log(1+xa)xndx=n=0(1)n{[xn+1log(1+xa)n+1]10an+110xn+1xa11+xadx}



2nd way
I tried IBP but I get to an unpleasant integral of the form 10ln(1+x)xa11+xadx.




3nd way
It was just an idea ... expand the nominator into Taylor Series , swip integration and summation and get into a digamma form . This way suggests that a closed form is far away ... since we are dealing with digammas here.



The result I got was:
1011+xk=1(1)k1kxak=k=1(1)k1k10xak1+xdx=1/2k=1(1)k1k[ψ(ak2+1)ψ(ak2+1/2)]
and I can't go on.

No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...