My question is: Suppose $X_1,...X_n$ are independent random variables from a continuous function with common $CDF$ $ F_Y(y)$ and common $PDF $ $f_X(x)$. Let $ Y= max \lbrace X_1,...X_2 \rbrace $. Now I showed in part a) that $ F_Y(y) = (F_X(y))^n$, but I am stuck on part b). Part b) asks me to derive the PDF, $f_Y(y) $. Any suggestions????
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X $\int_0^...
-
I use Euclidean Algorithm: 4620 = 101 * 45 + 75. long story short. I get 3 = 2 * 1 + 1. After that 2 = 1 * 2 + 0. gcd(101,4620) = 1. So I us...
No comments:
Post a Comment