Apply the Extended Euclidean Algorithm of back-substitution to find
the value of gcd and to express \gcd(85, 45) in the form 85x + 45y for a pair of integers x and y.
I have no idea what is the difference between the regular EEA and the back-substitution EEA. The only thing that I have been taught is constructing the EEA table, for some values a, b. Can anyone help me explain this? Thanks a ton!
Answer
You’re probably intended to do the substitutions explicitly. You have
\begin{align*} 85&=1\cdot45+40\\ 45&=1\cdot40+5\\ 40&=8\cdot5\;. \end{align*}
Now work backwards:
\begin{align*} 5&=1\cdot45-1\cdot40\\ &=1\cdot45-1\cdot(1\cdot85-1\cdot45)\\ &=(-1)\cdot85+2\cdot45\;. \end{align*}
The tabular method is just a shortcut for this explicit back-substitution.
No comments:
Post a Comment