Saturday, 6 July 2013

elementary number theory - how can one find the value of the expression, $(1^2+2^2+3^2+cdots+n^2)$











how can one find the value of the expression, $(1^2+2^2+3^2+\cdots+n^2)$



Let,



$T_{2}(n)=1^2+2^2+3^2+\cdots+n^2$



$T_{2}(n)=(1^2+n^2)+(2^2+(n-1)^2)+\cdots$




$T_{2}(n)=((n+1)^2-2(1)(n))+((n+1)^2-2(2)(n-1))+\cdots$


Answer



Hint: $(n+1)^3-n^3=3n^2+3n+1$ and use telescopic sum.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...